Improvement of Interior Ballistic Performance Utilizing Particle Swarm Optimization

Author:

El Sadek Hazem1,Zhang Xiaobing1,Rashad Mahmoud1,Cheng Cheng1

Affiliation:

1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

This paper investigates the interior ballistic propelling charge design using the optimization methods to select the optimum charge design and to improve the interior ballistic performance. The propelling charge consists of a mixture propellant of seven-perforated granular propellant and one-hole tubular propellant. The genetic algorithms and some other evolutionary algorithms have complex evolution operators such as crossover, mutation, encoding, and decoding. These evolution operators have a bad performance represented in convergence speed and accuracy of the solution. Hence, the particle swarm optimization technique is developed. It is carried out in conjunction with interior ballistic lumped-parameter model with the mixture propellant. This technique is applied to both single-objective and multiobjective problems. In the single-objective problem, the optimization results are compared with genetic algorithm and the experimental results. The particle swarm optimization introduces a better performance of solution quality and convergence speed. In the multiobjective problem, the feasible region provides a set of available choices to the charge’s designer. Hence, a linear analysis method is adopted to give an appropriate set of the weight coefficients for the objective functions. The results of particle swarm optimization improved the interior ballistic performance and provided a modern direction for interior ballistic propelling charge design of guided projectile.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3