Affiliation:
1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract
This paper investigates the interior ballistic propelling charge design using the optimization methods to select the optimum charge design and to improve the interior ballistic performance. The propelling charge consists of a mixture propellant of seven-perforated granular propellant and one-hole tubular propellant. The genetic algorithms and some other evolutionary algorithms have complex evolution operators such as crossover, mutation, encoding, and decoding. These evolution operators have a bad performance represented in convergence speed and accuracy of the solution. Hence, the particle swarm optimization technique is developed. It is carried out in conjunction with interior ballistic lumped-parameter model with the mixture propellant. This technique is applied to both single-objective and multiobjective problems. In the single-objective problem, the optimization results are compared with genetic algorithm and the experimental results. The particle swarm optimization introduces a better performance of solution quality and convergence speed. In the multiobjective problem, the feasible region provides a set of available choices to the charge’s designer. Hence, a linear analysis method is adopted to give an appropriate set of the weight coefficients for the objective functions. The results of particle swarm optimization improved the interior ballistic performance and provided a modern direction for interior ballistic propelling charge design of guided projectile.
Funder
Natural Science Foundation of Jiangsu Province
Subject
General Engineering,General Mathematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献