Construction of Immune-Associated Nomogram for Predicting the Recurrence Survival Risk of Stage I Cervical Cancer

Author:

Wang Yajuan1ORCID,Zhang Lejing1,Wang Bin1,Cheng Yuanfang1ORCID

Affiliation:

1. Sanquan College of Xinxiang Medical University, West of Changjiang Avenue, Pingyuan New Area, Xinxiang City, Henan Province, China

Abstract

Background. Various studies reported that the prognosis of patients with cervical cancer (CC) was significantly associated with immunity, whereas limited studies have explored whether immune-associated genes could be classifiers for recurrence-free survival (RFS) of stage I CC. Thus, an improved immune-related gene signature for stage I CC patients’ prognosis is urgently required. Materials and Methods. We retrospectively analyzed the gene expression profiles of stage I CC patients in the GSE44001 set from the Gene Expression Omnibus (GEO) database. The stage I CC patients were randomly divided into the training group and the internal validation group. The training patients were adopted to develop a prognostic immune gene-based signature; meanwhile, the internal validation patients were used to validate the power of the selected immune gene-related signature using univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis. The accuracy and reliability of the immune gene-related signature were evaluated based on Kaplan-Meier analysis and time-dependent receiver operating characteristic (ROC) curves. Results. High power of the 8-immune gene signature was found on the basis of ROC analysis (AUC at 1, 3, and 5 years were exhibited in the internal validation group (0.702, 0.715, and 0.728, respectively), external validation group (0.702, 0.825, and 0.842, respectively), and entire GEO dataset (0.840, 0.894, and 0.852, respectively)). Besides, C -index, ROC, calibration plots, and decision curve analysis (DCA) also acted well in our nomogram, suggestive of a high ability of the nomogram to elevate the prognostic prediction of stage I CC patients. Conclusions. In this study, we successfully constructed an integrated 8-immune gene-based signature which could accurately identify patients with low prognostic risk from those with high prognostic risk. In addition, we developed an immune-related nomogram which can elevate the prognostic prediction of stage I CC patients.

Funder

Education Department of Henan Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3