Human Gait Recognition Based on Multiple Feature Combination and Parameter Optimization Algorithms

Author:

Gao Farong1ORCID,Tian Taixing1,Yao Ting1,Zhang Qizhong1

Affiliation:

1. School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Accuracy is a key index of human gait recognition. In this paper, we propose an improved gait recognition algorithm, which combines multiple feature combination and artificial bee colony for optimizing the support vector machine (ABC-SVM). Firstly, considering the complexity characteristics of surface electromyography (sEMG) signals, four types of features are extracted from the denoised sEMG signals, including the time-domain features of integral of absolute value (IAV), variance (VAR), and number of zero-crossing (ZC) points, frequency-domain features of mean power frequency (MPF) and median frequency (MF), and wavelet features and fuzzy entropy features. Secondly, the classifiers of SVM, linear discriminant analysis (LDA), and extreme learning machine (ELM) are employed to recognize the gait with obtained features, including singe-class features, multiple combination features, and optimized features of dimension reduction by principal component analysis (PCA). Thirdly, the penalty coefficient and kernel function parameter of the SVM classifier are optimized by the ABC algorithm, and the influence of different features and classifiers on the recognition results is studied. Finally, the feature samples selected to construct the SVM classifier are trained and recognized. Results show that the classification performance of the ABC-SVM classifier is significantly better than that of the nonoptimized SVM classifier, and the average recognition rate is increased by 3.18%. In addition, the combined feature samples (time-domain, frequency-domain, wavelet, and fuzzy entropy features) not only improve the gait classification accuracy but also enhance the recognition stability.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3