Homogenized ORB Algorithm Using Dynamic Threshold and Improved Quadtree

Author:

Ma Chaoqun1ORCID,Hu Xiaoguang1ORCID,Xiao Jin1ORCID,Zhang Guofeng1ORCID

Affiliation:

1. State Key Laboratory of Virtual Reality Technology and Systems, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

Abstract

The Oriented FAST and Rotated BRIEF (ORB) algorithm has the problem that the extracted feature points are overconcentrated or even overlapped, leading to information loss of local image features. A homogenized ORB algorithm using dynamic thresholds and improved quadtree method is proposed in this paper, named Quadtree ORB (QTORB). In the feature point extraction stage, a new dynamic local threshold calculation method is proposed to enhance the algorithm’s ability to extract feature points at homogeneous regions. Then, a quadtree method is improved and adopted to manage and optimize feature points to eliminate those excessively concentrated and overlapping feature points. Meanwhile, in the feature points optimization process, different quadtree depths are set at different image pyramid levels to prevent excessive splitting of the quadtree and increase calculation speed. In the feature point description stage, local gray difference value information is introduced to enhance the saliency of the feature description. Finally, the Hamming distance is used to match points and RANSAC is used to avoid mismatches. Two datasets, namely, the optical image dataset and SAR image dataset, are used in the experiment. The experimental result shows that, considering accuracy and real-time efficiency, the QTORB can effectively improve the distribution uniformity of feature points.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference46 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3