Development of an Estimation Instrument of Acoustic Lens Properties for Medical Ultrasound Transducers

Author:

Choi Hojong1ORCID,Jeong Jongseon Johnson2ORCID,Kim Jungsuk3ORCID

Affiliation:

1. Ultrasound System Hardware Laboratory and Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, 350-27 Gumi-Daero, Gumi, Gyeongbuk 35029, Republic of Korea

2. IMP System, 301-3ho 267-96 Gongdan2-dong, Gumi, Gyeongbuk 39373, Republic of Korea

3. Department of Biomedical Engineering, Gachon University, Incheon 21936, Republic of Korea

Abstract

In medical ultrasound transducers, the transmission mode (pass-through) approach has been used to estimate the characteristics of the acoustic lens. However, it is difficult to measure the acoustic lens properties with high precision because of human, systemic, or mechanical measurement errors. In this paper, we propose a low-cost estimation instrument for acoustic lens properties connected with a customized database. In the instrument, three-axis and one-axis transmitting and material fixtures accurately align the transmitting and receiving transducers separately. Through the developed instrument, we obtained a precise standard deviation of the attenuation coefficient and velocity of the acoustic lens material of 0.05 dB/cm and 2.62 m/s, respectively. Additionally, the simultaneous alignment between the fixtures is controllable with developed programs, thus generating very accurate information of the acoustic lens about the testing ultrasound transducer. In our instrument, the database could support users in managing the result data efficiently. User programs developed using LabVIEW provide the capability to obtain precise values of the attenuation coefficient and velocity, which represent the fundamental material characteristics of the acoustic lens of the medical ultrasound transducers. The developed review program of the customized database can also search the acoustic lens information and store the experimental results.

Funder

Ministry of Science, ICT & Future Planning

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. US Scanning Technologies and AI;Scanning Technologies for Autonomous Systems;2024

2. Harmonic-Reduced Bias Circuit for Ultrasound Transducers;Sensors;2023-04-30

3. An Inverse Class-E Power Amplifier for Ultrasound Transducer;Sensors;2023-03-26

4. Generative modeling and reinforcement learning for acoustic lens design;Metamaterials, Metadevices, and Metasystems 2022;2022-10-03

5. STUDY OF ACOUSTIC SOURCE EXCITED BY PULSED MAGNETIC FIELD;Journal of Mechanics in Medicine and Biology;2021-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3