A Planar Acoustic Field Reconstruction Method Based on Fast Wave Superposition Spectrum and Sparse Sampling

Author:

Zhang Yang12,Wang Yu-Jiang12ORCID,Xiang Yu1ORCID,Shi Zi-Yu12,Fan Shao-Jie12,Lu Jing12ORCID

Affiliation:

1. Key Laboratory of Automobile Component and Vehicle Technology in Guangxi, Guangxi University of Science and Technology, Liuzhou 545006, China

2. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China

Abstract

Based on the fast Fourier wave superposition spectrum method, a new equivalent source method (ESM) with a sparse sampling technique is proposed. First, the equivalent source intensities are expanded on a rectangular virtual surface using a bidirectional Fourier series, resulting in a semi-analytic and half-numerical acoustic pressure expression. The Fourier coefficients result in good sparsity for continuous acoustic pressures from structural vibration sources, and the proposed sparse sampling method can further reduce correlation in the measurement matrix. Better results can be obtained by solving the l1 norm optimization problem. Finally, the method was verified using several examples. The proposed method offers two main advantages compared with the traditional compressive equivalent source method: (1) the unknown source intensity vector is expanded into a bidirectional Fourier series, thereby transforming an unknown source intensity vector into a sparse Fourier coefficient vector, which has better sparsity; (2) the proposed method constructs a random sampling matrix, which is expanded into a sparse sampling matrix by random distribution, thereby improving the reconstruction accuracy of planar near-field acoustic field compared with the traditional random position sampling method reducing correlation in the transfer matrix.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3