Leakage Current Sensor and Neural Network for  MOA Monitoring

Author:

He Tao1ORCID,Li Yang1,Zhang Zhong1,Shen Pengfei1,Zhang Yu1

Affiliation:

1. Ma’anshan Electric Power Supply Company, State Grid Anhui Electric Power Co Ltd, Ma’anshan 243000, China

Abstract

Metal-oxide arrester (MOA) has been widely used in electric power systems. The leakage current monitoring of MOA can not only detect the MOA’s running state continuously and intelligently but also reduce the unexpected outage of the equipment, which is also beneficial to the stability of the grid. The MOA loses its protection function due to various faults caused by excessive leakage current in actual running. This article studies the monitoring method of MOA based on leakage current sensor and back propagation (BP) neural network. At first, we design a novel leakage current sensor to acquire the leakage current of MOA. Then, the leakage current measurement of MOA based on harmonic analysis is proposed. Finally, the strong training ability of the BP neural network is used to train some key parameters that can reflect the aging of MOA so as to monitor the MOA state. The experimental results show that the leakage current acquired from the simulation is close to the actual leakage current that needs to be measured. It is also shown that the proposed method has good anti-interference and can effectively monitor the aging of MOA. Through the training of the BP neural network, the experiments prove that the training method in this article is superior to other neural network training methods obviously.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault diagnosis method for arrester in infrared images based on improved U-Net;Measurement;2024-08

2. Overview of Techniques for Zero-Value Detection of Insulators;2023 the 7th International Conference on Energy and Environmental Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3