Exaggerated IL-15 and Altered Expression of foxp3+ Cell-Derived Cytokines Contribute to Enhanced Colitis in Nlrp3−/− Mice

Author:

Hirota Simon A.12ORCID,Ueno Aito3ORCID,Tulk Sarah E.3,Becker Helen M.3,Schenck L. Patrick34ORCID,Potentier Mireille S.4,Li Yan3,Ghosh Subrata3,Muruve Daniel A.3ORCID,MacDonald Justin A.4,Beck Paul L.3

Affiliation:

1. Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada T2N 4N1

2. Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1

3. Department of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1

4. Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada T2N 4N1

Abstract

The pathogenesis of Crohn’s disease (CD) involves defects in the innate immune system, impairing responses to microbes. Studies have revealed that mutations NLRP3 are associated with CD. We reported previously that Nlrp3−/− mice were more susceptible to colitis and exhibited reduced colonic IL-10 expression. In the current study, we sought to determine how the loss of NLRP3 might be altering the function of regulatory T cells, a major source of IL-10. Colitis was induced in wild-type (WT) and Nlrp3−/− mice by treatment with dextran sulphate sodium (DSS). Lamina propria (LP) cells were assessed by flow cytometry and cytokine expression was assessed. DSS-treated Nlrp3−/− mice exhibited increased numbers of colonic foxp3+ T cells that expressed significantly lower levels of IL-10 but increased IL-17. This was associated with increased expression of colonic IL-15 and increased surface expression of IL-15 on LP dendritic cells. Neutralizing IL-15 in Nlrp3−/− mice attenuated the severity of colitis, decreased the number of colonic foxp3+ cells, and reduced the colonic expression of IL-12p40 and IL-17. These data suggest that the NLRP3 inflammasome can regulate intestinal inflammation through noncanonical mechanisms, providing additional insight as to how NLRP3 variants may contribute to the pathogenesis of CD.

Funder

Canadian Institutes of Health Research

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3