Suppression of Matrix Metalloproteinase Production in Nasal Fibroblasts by Tranilast, an Antiallergic Agent, In Vitro

Author:

Shimizu Toshiyuki1,Kanai Kenichi1,Asano Kazuhito2,Hisamitsu Tadashi2,Suzaki Harumi1

Affiliation:

1. Department of Otolaryngology, School of Medicine, Showa University, Tokyo 142-8666, Japan

2. Department of Physiology, School of Medicine, Showa University, Tokyo 142-8555, Japan

Abstract

Allergic rhinitis is an inflammatory disease characterized by nasal wall remodeling with intense infiltration of eosinophils and mast cells/basophils. Matrix metalloproteinases (MMPs), MMP-2 and MMP-9, are the major proteolytic enzymes that induce airway remodeling. These enzymes are also important in the migration of inflammatory cells through basement membrane components. We evaluated whether tranilast (TR) could inhibit MMP production from nasal fibroblasts in response to tumor necrosis factor-α(TNF-α) stimulation in vitro. Nasal fibroblasts (NF) were established from nasal polyp tissues taken from patients with allergic rhinitis. NF (2×105cells/mL) were stimulated with TNF-αin the presence of various concentrations of TR. After 24 hours, the culture supernatants were obtained and assayed for MMP-2, MMP-9, TIMP-1, and TIMP-2 levels by ELISA. The influence of TR on mRNA expression of MMPs and TIMPs in cells cultured for 12 hours was also evaluated by RT-PCR. TR at more than5×105M inhibited the production of MMP-2 and MMP-9 from NF in response to TNF-αstimulation, whereas TIMP-1 and TIMP-2 production was scarcely affected. TR also inhibited MMP mRNA expression in NF after TNF-αstimulation. The present data suggest that the attenuating effect of TR on MMP-2 and MMP-9 production from NF induced by inflammatory stimulation may underlie the therapeutic mode of action of the agent in patients with allergic diseases, including allergic rhinitis.

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3