Backstepping Sliding Mode Robust Control for a Wire-Driven Parallel Robot Based on a Nonlinear Disturbance Observer

Author:

Wang Yuqi12ORCID,Lin Qi2,Zhou Lei1,Shi Xinxin1,Wang Lei1

Affiliation:

1. School of Automation, Nanjing Institute of Technology, Nanjing, China

2. Xiamen University, Xiamen, China

Abstract

Based on a nonlinear disturbance observer, a backstepping sliding mode robust control is proposed for a wire-driven parallel robot (WDPR) system used in the wind tunnel test to dominate the motion of the end effector. The control method combines both the merits of backstepping control and sliding mode robust control. The WDPR is subject to different types of disturbances, and these disturbances will affect the motion precision of the end effector. To overcome these problems, a nonlinear disturbance observer (NDO) is designed to reject such disturbances. In this study, the design method of the nonlinear disturbance observer does not require the reliable dynamic model of the WDPR. Moreover, the design method can be used not only in the WDPR but also in other parallel robots. Then, a backstepping design method is adopted and a sliding mode term is introduced to construct a desired controller, and the disturbances are compensated in the controller to reduce the switching gain and guarantee the robustness. For the sake of verifying the stabilization of the closed-loop system, the Lyapunov function is constructed to analyze the stabilization of the system. Finally, the feasibility and validity of the proposed control scheme are proved through both simulation and experimental results.

Funder

Nanjing Institute of Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3