Frequency Diverse Array Antennas: From Their Origin to Their Application in Wireless Communication Systems

Author:

Nusenu Shaddrack Yaw12ORCID,Basit Abdul13ORCID

Affiliation:

1. University of Electronic Science and Technology of China, Chengdu, China

2. Koforidua Technical University (KTU), Koforidua, Ghana

3. Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan

Abstract

Wireless communication systems have gained considerable growth rate nowadays, with the anticipation that communications will be available everywhere and anywhere in the near future. Phased array antenna whose beam steering is fixed in an angle for all range cells has been utilized for wireless communications. To mitigate this problem, a new array concept, namely, frequency diverse array (FDA), was proposed. This paper presents how FDA technology could be useful in today’s wireless communication technology. FDA is distinct from phased array in a sense that it employs frequency increment across array elements. The use of a frequency increment creates a beam steering that is a function of angle, time, and range which allows the FDA antenna to transmit the energy along the prespecified range and angle direction. In addition, we consider the time-variant beampattern aspect of an FDA, which has normally been ignored in the literature. In this study, we present the mathematical fundamentals of FDA antenna and why it could be exploited for wireless communication systems. Furthermore, FDA using Butler matrix for communication has been discussed. Performance analysis in terms of transmit beampattern, signal-to-interference-and-noise ratio (SINR), and direction of arrival has been presented and compared with that of phased array antenna.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3