A Novel Transient Analysis of Multiterminal VSC‐HVDC System Incorporating Superconducting Fault Current Limiter

Author:

Ahmed WajidORCID,Manohar PremilaORCID,Basha C. H. HussaianORCID

Abstract

Power transmission using a voltage source converter‐ (VSC‐) based high‐voltage direct current (HVDC) system offers autonomous control of real and reactive power, constant DC voltage polarity, and bidirectional power flow. This helps to realize the multiterminal VSC‐HVDC system and its integration into renewable energy sources to meet the growing power demand. However, there is a risk of higher voltages and currents during a DC line fault. The barrier to the advancements of VSC‐MTDC systems is the nonavailability of commercial, higher‐rated DC circuit breakers. This necessitates research on alternative methods of DC fault‐clearing schemes with available technologies. In this direction, a superconducting fault current limiter (SCFCL) is an alternative option to mitigate the problems encountered in VSC‐MTDC system operation. Because of this, there are not many VSC‐MTDC systems available worldwide. This paper discusses different issues associated with the transient performance of the VSC‐MTDC system. A representative case involving resistive SCFCL for DC line protection is presented. The simulations are carried out in the PSCAD/EMTDC platform.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3