Affiliation:
1. College of Mechanical Electronic & Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2. School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
Abstract
The kinematic and dynamic models of robots with complex mechanisms such as the closed-chain mechanism and the branch mechanism are often very complex and difficult to be calculated. Aiming at this issue, in this paper, the pose of the component in robots is represented by the Euclidean group and its subgroups with the proposed method. The component’s velocity is derived using the relationship between the Lie group and Lie algebra, and the acceleration and Jacobian matrix are then derived on this basis. The Lagrange equation is expressed by the obtained kinematic parameter expressions. Establishing the model with this method can obtain clear physical meaning and make the expressions uniform and easy to program, which is convenient for computer-aided calculation and parameterization. Calculating by the properties of the Lie group can reduce the calculation and model complexity, especially for calculating the velocity and acceleration, which reduces the calculation error and eases the calculation. Therefore, the proposed modeling and calculation method of kinematics and dynamics of robots is especially suitable for robots with complex mechanisms. As an example, the kinematic and dynamic model of the manipulator developed in our laboratory is established and a working process of it is numerically calculated. Then, the results of the numerical calculation are compared with the results of virtual prototype simulation in ADAMS to verify the correctness.
Funder
National Defense Science and Technology Innovation
Subject
General Engineering,General Mathematics