Investigation of Structural, Electrical, and Vibrational Properties of Bi1.98A0.02Fe4O9 (A = Ba, Ce) Multiferroic Ceramics

Author:

Kumar Ashwini1ORCID,Sharma Poorva1ORCID,Bhardwaj Nikhil2,Tang Jingyou1,Tan Guolong13

Affiliation:

1. Key Laboratory of Multifunctional Materials, Department of Electronic Engineering, Luzhou Vocational and Technical College, Luzhou, Sichuan 646000, China

2. School of Physics, Devi Ahilya University, Indore 452001, India

3. Institute of New Materials, Wuhan University of Technology, Wuhan,430070, China

Abstract

In this paper, we report the synthesis, phase formation, and basic characterization of polycrystalline Bi2Fe4O9, Bi1.98Ba0.02Fe4O9, and Bi1.98Ce0.02Fe4O9 samples prepared by the sol-gel technique. The crystal structure of the prepared samples has been characterized by means of X-ray diffraction and Raman scattering spectroscopy. All the obtained XRD peaks can be indexed to the orthorhombic Pbam structure and reveal the formation of Bi2Fe4O9. The Raman spectrum identifies Ag, B2g, and B3g active optical phonon modes. The crystallite size and morphology of the nanoparticles have been analyzed using scanning electron microscope (SEM). Dielectric constant (ε′) decreases as the frequency increases, and it is constant at the higher frequency region which can be explained based on the ionic conduction phenomenon in the low frequency region. The ε′ values of Bi2Fe4O9(650–850), Bi2Fe4O9(800–850), Bi1.98Ba0.02Fe4O9, and Bi1.98Ce0.02Fe4O9 samples at 10 Hz frequency are about 37, 75, 90, and 393, respectively. The observed properties signify that these materials are very useful in advanced technological and practical applications.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3