Random Dynamic Response Characteristics of Pipeline Subjected to Blasting Cylindrical SH Waves

Author:

Lu Shiwei1ORCID,Zhang Heng1ORCID,Ji Ling2ORCID

Affiliation:

1. School of Urban Construction, Yangtze University, Jingzhou 434023, China

2. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China

Abstract

It is essential to investigate the influence of blasting vibrations on pipelines, and the dynamic response is the crux in the safety issues. At present, the blasting seismic wave is usually regarded as a plane wave. However, there is little research about the dynamic response characteristics of underground structures subjected to nonplane waves. The analytical solution to dynamic stress concentration factor (DSCF) of pipelines subjected to cylindrical SH wave was derived. Besides, the randomness of the shear modulus of soil was considered, and the statistical analysis of DSCF was carried out by the Monte Carlo simulation method. Results show that the variability of the shear modulus of soil has a significant influence on the probability distribution of DSCF. The larger the variation coefficient of the shear modulus is, the more obvious the skewness of DSCF is. The influence of low-frequency wave on pipeline increases with the reducing normalized distance r∗, while the influence of high-frequency wave reduces and the variation amplitude of DSCF increases. Compared with the DSCF of pipe subjected to a plane wave, a lower dominant frequency or larger normalized distance for the cylindrical SH wave will generate a more similar statistical characteristic of DSCF.

Funder

Natural Science Foundation of Hubei Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference34 articles.

1. Response of Tunnels to Incident SH-Waves

2. Diffraction of SV waves by underground, circular, cylindrical cavities

3. On deformation near a circular underground cavity subjected to incident plane P waves;V. W. Lee;European Journal of Earthquake Engineering,1993

4. Dynamic response of twin circular tunnels due to incident SH-waves;B. Thambirajah;Earthquake Engineering & Structural Dynamics,1984

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3