Calibrating Path Choices and Train Capacities for Urban Rail Transit Simulation Models Using Smart Card and Train Movement Data

Author:

Mo Baichuan1ORCID,Ma Zhenliang2ORCID,Koutsopoulos Haris N.3ORCID,Zhao Jinhua4ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2. Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia

3. Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA

4. Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 20139, USA

Abstract

Transit network simulation models are often used for performance and retrospective analysis of urban rail systems, taking advantage of the availability of extensive automated fare collection (AFC) and automated vehicle location (AVL) data. Important inputs to such models, in addition to origin-destination flows, include passenger path choices and train capacity. Train capacity, which has often been overlooked in the literature, is an important input that exhibits a lot of variabilities. The paper proposes a simulation-based optimization (SBO) framework to simultaneously calibrate path choices and train capacity for urban rail systems using AFC and AVL data. The calibration is formulated as an optimization problem with a black-box objective function. Seven algorithms from four branches of SBO solving methods are evaluated. The algorithms are evaluated using an experimental design that includes five scenarios, representing different degrees of path choice randomness and crowding sensitivity. Data from the Hong Kong Mass Transit Railway (MTR) system is used as a case study. The data is used to generate synthetic observations used as “ground truth.” The results show that the response surface methods (particularly constrained optimization using response surfaces) have consistently good performance under all scenarios. The proposed approach drives large-scale simulation applications for monitoring and planning.

Funder

Massachusetts Institute of Technology

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3