Affiliation:
1. College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China
2. Department of Bioengineering, National University of Singapore, Singapore 117575
Abstract
The underwater recovery of autonomous underwater vehicles (AUV) is a process of 6-DOF motion control, which is related to characteristics with strong nonlinearity and coupling. In the recovery mission, the vehicle requires high level control accuracy. Considering an AUV called BSAV, this paper established a kinetic model to describe the motion of AUV in the horizontal plane, which consisted of nonlinear equations. On the basis of this model, the main coupling variables were analyzed during recovery. Aiming at the strong coupling problem between the heading control and sway motion, we designed a decoupling compensator based on the fuzzy theory and the decoupling theory. We analyzed to the rules of fuzzy compensation, the input and output membership functions of fuzzy compensator, through compose operation and clear operation of fuzzy reasoning, and obtained decoupling compensation quantity. Simulation results show that the fuzzy decoupling controller effectively reduces the overshoot of the system, and improves the control precision. Through the water tank experiments and analysis of experimental data, the effectiveness and feasibility of AUV recovery movement coordinated control based on fuzzy decoupling method are validated successful, and show that the fuzzy decoupling control method has a high practical value in the recovery mission.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献