Establishing Reliable Slope Stability Hazard Map Based on GIS-Based Tool in Conjunction with Finite Element Methods

Author:

Sengani Fhatuwani12ORCID,Muavhi Nndanduleni1ORCID,Mulenga François2ORCID

Affiliation:

1. Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa

2. Department of Electrical and Mining Engineering, University of South Africa, Florida Campus Private Bag X6, Johannesburg 1710, South Africa

Abstract

This paper describes the establishment of a slope stability hazard map based on a GIS-based tool in conjunction with the finite element method (FEM). In this regard, Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) images were modeled using the Weight of Evidence (WOE) technique. The previous simulation was therefore validated using visual observations and FEM (Phase 2D and SLIDE). The above techniques made it possible to develop and validate the reliable slope stability hazard map with the use of a case study. The results show that the established hazard map correlates very well with visual observation and stability assessment performed using FEM models. The map categorises slopes based on their susceptibility to failure; however, it has been discovered that most of the slopes that rated highly susceptible were located along or closer to geological features (faults) or streams and were at high elevations. Similarly, the SLIDE model has been utilised to perform the safety factor of the identified slope and the model has shown that those slopes were not stable. Furthermore, the influence of geological features was further studied using the Phase 2D model and it was discovered that the features contributed largely to the displacement of the rock mass with time, and as a result, instability was expected. The overall conclusion of the study is that the combination of geotechnical and GIS-based tools appeared to provide an insight in categorising the hazard of slopes located within mountainous terrain.

Funder

University of Limpopo

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3