Inflammation and Oxidative Stress Role of S100A12 as a Potential Diagnostic and Therapeutic Biomarker in Acute Myocardial Infarction

Author:

Xie Jian1ORCID,Luo Changjun1ORCID,Mo Binhai2ORCID,Lin Yunhua3ORCID,Liu Guoqing3ORCID,Wang Xiantao1ORCID,Li Lang14ORCID

Affiliation:

1. Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 Guangxi, China

2. Department of Cardiology, The First People Hospital of Nanning & The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530016 Guangxi, China

3. The First Clinical Medical College, Guangxi Medical University, Nanning 530021, China

4. Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021 Guangxi, China

Abstract

Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases with high morbidity and mortality. Numerous studies have indicated that S100A12 may has an essential role in the occurrence and development of AMI, and in-depth studies are currently lacking. The purpose of this study is to investigate the effect of S100A12 on inflammation and oxidative stress and to determine its clinical applicability in AMI. Here, AMI datasets used to explore the expression pattern of S100A12 in AMI were derived from the Gene Expression Omnibus (GEO) database. The pooled standard average deviation (SMD) was calculated to further determine S100A12 expression. The overlapping differentially expressed genes (DEGs) contained in all included datasets were recognized by the GEO2R tool. Then, functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were carried out to determine the molecular function of overlapping DEGs. Gene set enrichment analysis (GSEA) was conducted to determine unrevealed mechanisms of S100A12. Summary receiver operating characteristic (SROC) curve analysis and receiver operating characteristic (ROC) curve analysis were carried out to identify the diagnostic capabilities of S100A12. Moreover, we screened miRNAs targeting S100A12 using three online databases (miRWalk, TargetScan, and miRDB). In addition, by comprehensively using enzyme-linked immunosorbent assay (ELISA), real-time quantitative PCR (RT–qPCR), Western blotting (WB) methods, etc., we used the AC16 cells to validate the expression and underlying mechanism of S100A12. In our study, five datasets related to AMI, GSE24519, GSE60993, GSE66360, GSE97320, and GSE48060 were included; 412 overlapping DEGs were identified. Protein-protein interaction (PPI) network and functional analyses showed that S100A12 was a pivotal gene related to inflammation and oxidative stress. Then, S100A12 overexpression was identified based on the included datasets. The pooled standard average deviation (SMD) also showed that S100A12 was upregulated in AMI ( SMD = 1.36 , 95% CI: 0.70-2.03, p = 0.024 ). The SROC curve analysis result suggested that S100A12 had remarkable diagnostic ability in AMI ( AUC = 0.90 , 95% CI: 0.87-0.92). And nine miRNAs targeting S100A12 were also identified. Additionally, the overexpression of S100A12 was further confirmed that it maybe promote inflammation and oxidative stress in AMI through comprehensive in vitro experiments. In summary, our study suggests that overexpressed S100A12 may be a latent diagnostic biomarker and therapeutic target of AMI that induces excessive inflammation and oxidative stress. Nine miRNAs targeting S100A12 may play a crucial role in AMI, but further studies are still needed. Our work provides a positive inspiration for the in-depth study of S100A12 in AMI.

Funder

Guangxi Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3