Using Machine Learning to Unravel the Value of Radiographic Features for the Classification of Bone Tumors

Author:

Pan Derun1ORCID,Liu Renyi1ORCID,Zheng Bowen1ORCID,Yuan Jianxiang2,Zeng Hui1,He Zilong1,Luo Zhendong3,Qin Genggeng1ORCID,Chen Weiguo1ORCID

Affiliation:

1. Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China

2. Department of Radiology, Foshan Hospital of TCM, Foshan, Guangdong Province, China

3. Department of Radiology, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China

Abstract

Objectives. To build and validate random forest (RF) models for the classification of bone tumors based on the conventional radiographic features of the lesion and patients’ clinical characteristics, and identify the most essential features for the classification of bone tumors. Materials and Methods. In this retrospective study, 796 patients (benign bone tumors: 412 cases, malignant bone tumors: 215 cases, intermediate bone tumors: 169 cases) with pathologically confirmed bone tumors from Nanfang Hospital of Southern Medical University, Foshan Hospital of TCM, and University of Hong Kong-Shenzhen Hospital were enrolled. RF models were built to classify tumors as benign, malignant, or intermediate based on conventional radiographic features and potentially relevant clinical characteristics extracted by three musculoskeletal radiologists with ten years of experience. SHapley Additive exPlanations (SHAP) was used to identify the most essential features for the classification of bone tumors. The diagnostic performance of the RF models was quantified using receiver operating characteristic (ROC) curves. Results. The features extracted by the three radiologists had a satisfactory agreement and the minimum intraclass correlation coefficient (ICC) was 0.761 (CI: 0.686-0.824, P < .001 ). The binary and tertiary models were built to classify tumors as benign, malignant, or intermediate based on the imaging and clinical features from 627 and 796 patients. The AUC of the binary (19 variables) and tertiary (22 variables) models were 0.97 and 0.94, respectively. The accuracy of binary and tertiary models were 94.71% and 82.77%, respectively. In descending order, the most important features influencing classification in the binary model were margin, cortex involvement, and the pattern of bone destruction, and the most important features in the tertiary model were margin, high-density components, and cortex involvement. Conclusions. This study developed interpretable models to classify bone tumors with great performance. These should allow radiographers to identify imaging features that are important for the classification of bone tumors in the clinical setting.

Funder

High Level-Hospital Program, Health Commission of Guangdong Province, China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3