Class-Incremental Learning on Video-Based Action Recognition by Distillation of Various Knowledge

Author:

Maraghi Vali Ollah1ORCID,Faez Karim1ORCID

Affiliation:

1. Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

Recognition of activities in the video is an important field in computer vision. Many successful works have been done on activity recognition and they achieved acceptable results in recent years. However, their training is completely static, meaning that all classes are taught to the system in one training step. The system is only able to recognize the equivalent classes. The main disadvantage of this type of training is that if new classes need to be taught to the system, the system must be retrained from scratch and all classes retaught to the system. This specification has many challenges, such as storing and retaining data and respending training costs. We propose an approach for training the action recognition system in video data which can teach new classes to the system without the need for previous data. We will provide an incremental learning algorithm for class recognition tasks in video data. Two different approaches are combined to prevent catastrophic forgetting in the proposed algorithm. In the proposed incremental learning algorithm, two approaches are introduced and used to maintain network information in combination. These two approaches are network sharing and network knowledge distillation. We introduce a neural network architecture for action recognition to understand and represent the video data. We propose the distillation of network knowledge at the classification and feature level, which can be divided into spatial and temporal parts at the feature level. We also suggest initializing new classifiers using previous classifiers. The proposed algorithm is evaluated on the USCF101, HMDB51, and Kinetics-400 datasets. We will consider various factors such as the amount of distillation knowledge, the number of new classes and the incremental learnings stages, and their impact on the final recognition system. Finally, we will show that the proposed algorithm can teach new classes to the recognition system without forgetting the previous classes and does not need the previous data or exemplar data.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Deep Learning and Knowledge Distillation for Enhanced Traffic Anomaly Detection in Transportation Systems;2023 International Conference on Multimedia Analysis and Pattern Recognition (MAPR);2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3