The Morse Index of Sacks–Uhlenbeck α‐Harmonic Maps for Riemannian Manifolds

Author:

Shahnavaz AmirORCID,Kouhestani NaderORCID,Kazemi Torbaghan Seyed MehdiORCID

Abstract

In this paper, first we prove a nonexistence theorem for α‐harmonic mappings between Riemannian manifolds. Second, the instability of nonconstant α‐harmonic maps is studied with regard to the Ricci curvature criterion of their codomain. Then, we estimate the Morse index for measuring the degree of instability of some particular α‐harmonic maps. Furthermore, the notion of α‐stable manifolds and its applications are considered. Finally, we investigate the α‐stability of any compact Riemannian manifolds admitting a nonisometric conformal vector field and any Einstein Riemannian manifold under certain assumptions on the smallest positive eigenvalue of its Laplacian operator on functions.

Funder

Qatar National Library

Publisher

Wiley

Reference30 articles.

1. Harmonic Mappings of Riemannian Manifolds

2. Indice de Morse des applications harmoniques de la sphere;El Soufi A.;Compositio Mathematica,1995

3. On convolution and convex combination of harmonic mappings;Ahmad El-Faqeer A. S.;Journal of Mathematics,2021

4. Blow-up and global existence for heat flows of harmonic maps

5. Dispersion formula of a free electron laser with two relativistic electron beams and water-bag distribution function

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3