Motion Transmissibility for Load Identification Based on Optimum Sensor Placement

Author:

Alqam Hana’a M.1ORCID,Dhingra Anoop K.1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin, Milwaukee, WI 53201, USA

Abstract

Knowledge on loads acting on a structure is important for analysis and design. There are many applications in which it is difficult to measure directly the dynamic loads acting on a component. In such situations, it may be possible to estimate the imposed loads through a measurement of the system output response. Load identification through output response measurement is an inverse problem that is not only ill-conditioned but, in general, leads to multiple solutions. Therefore, additional information such as the number and locations of the imposed loads must be provided ahead of time in order to allow for a unique solution. This paper focuses on cases where such information is not readily available and uses the concept of motion transmissibility for the identification of loads applied to a structure. The identification of loads through measurement of structural response at a finite number of optimally selected sensor locations is investigated. Optimum sensor locations are identified using the D-optimal design algorithm to provide the most precise load estimates based on acceleration measurements using accelerometers. Simulation results for multi-degree-of-freedom (MDOF) discrete and continuous systems are presented to illustrate the proposed technique. It is seen that the proposed approach is effective in determining not only the number of applied loads as well as their locations but also the magnitude of applied loads.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3