Affiliation:
1. National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Automation, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
2. Beijing Aerospace Automatic Control Institute, Beijing 100854, China
Abstract
Generation of optimal reentry trajectory for a hypersonic vehicle (HV) satisfying both boundary conditions and path constraints is a challenging task. As a relatively new swarm intelligent algorithm, an adaptive fireworks algorithm (AFWA) has exhibited promising performance on some optimization problems. However, with respect to the optimal reentry trajectory generation under constraints, the AFWA may fall into local optimum, since the individuals including fireworks and sparks are not well informed by the whole swarm. In this paper, we propose an improved AFWA to generate the optimal reentry trajectory under constraints. First, via the Chebyshev polynomial interpolation, the trajectory optimization problem with infinite dimensions is transformed to a nonlinear programming problem (NLP) with finite dimension, and the scope of angle of attack (AOA) is obtained by path constraints to reduce the difficulty of the optimization. To solve the problem, an improved AFWA with a new mutation strategy is developed, where the fireworks can learn from more individuals by the new mutation operator. This strategy significantly enhances the interactions between the fireworks and sparks and thus increases the diversity of population and improves the global search capability. Besides, a constraint-handling technique based on an adaptive penalty function and distance measure is developed to deal with multiple constraints. The numerical simulations of two reentry scenarios for HV demonstrate the validity and effectiveness of the proposed improved AFWA optimization method, when compared with other optimization methods.
Funder
National Natural Science Foundation of China
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献