Experimental Investigation of the Effect of Graphene/Water Nanofluid on the Heat Transfer of a Shell-and-Tube Heat Exchanger

Author:

Zolfalizadeh Mehrdad1,Zeinali Heris Saeed1ORCID,Pourpasha Hadi1ORCID,Mohammadpourfard Mousa12ORCID,Meyer Josua P.3ORCID

Affiliation:

1. Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran

2. Department of Energy Systems Engineering, Izmir Institute of Technology, Izmir, Turkey

3. Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch, South Africa

Abstract

The most common type of heat exchanger used in a variety of industrial applications is the shell-and-tube heat exchanger (STHE). In this work, the impact of graphene nanoplate (GNP)/water nanofluids at 0.01 wt.%, 0.03 wt.%, and 0.06 wt.% on the thermal efficiency, thermal performance factor, pressure drop, overall heat transfer, convective heat transfer coefficient (CVHTC), and heat transfer characteristics of a shell-and-tube heat exchanger was examined. For these experiments, a new STHE was designed and built. The novelty of this study is the use of GNPs/water nanofluids in this new STHE for the first time and the fully experimental investigation of the attributes of nanofluids. GNP properties were analysed and confirmed using analyses including XRD and TEM. Zeta potential, DLS, and camera images were used to examine the stability of nanofluids at various periods. The zeta potential of the nanofluids was lower than -27.8 mV, confirming the good stability of GNP/water nanofluids. The results illustrated that the experimental data for distilled water had a reasonably good agreement with Sieder-Tate correlation. The maximum enhancement in the CVHTC of nanofluid with 0.06 wt.% of GNP, was equal to 910 (W/m2K), an increase of 22.47%. Also, the efficiency of the heat exchanger for nanofluid at 0.06 wt.% improved by 8.88% compared with that of the base fluid. The heat transfer rate of the nanofluid at maximum concentration and volume flow rate was 3915 (J/kg.K), an improvement of 15.65% over the base fluid. The pressure drops increased as the flow rate and concentration of the nanofluid increased. Although increasing the pressure drop in tubes would increase the CVHTC, it would also increase the power consumption of the pump. In conclusion, nanofluid at 0.06 wt.% had good performance.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3