Stability, Bifurcation, and Chaos Control of Two-Sided Market Competition

Author:

Xiao Jianli12ORCID,Xiao Hanli3ORCID,Zhang Xinchang4ORCID,You Xiang5ORCID

Affiliation:

1. Management School, Fudan University, Shanghai 200433, China

2. School of Business Administration, Nanchang Institute of Technology, Nanchang 330099, China

3. School of Tourism and Resources Environment, Qiannan Normal University for Nationalities, Duyun 55900, China

4. School of Foreign Languages and Literature, Nanchang Institute of Technology, Nanchang 330099, China

5. Department of Finance and Economics, Taiyuan University, Taiyuan 030000, China

Abstract

Benefitting from the popular uses of internet technologies, two-sided market has been playing an increasing prominent role in modern times. Users and developers can interact with each other through two-sided platforms. The two-sided market structure has been investigated profoundly. Through building a dynamics two-sided market model with bounded rational, stability conditions of the two-sided market competition system are presented. With the help of bifurcation diagram, Lyapunov exponent, and strange attractor, the stability of the two-sided market competition model is simulated. At last, we use the time-delayed feedback control (TDFC) method to control the chaos. Our main results are as follows: (1) when the adjustment speed of two-sided increases, the system becomes bifurcation, and chaos state happens finally. When the system is stable, the consumer fee is positive while developer fee is negative. (2) When the user externality increases, the stable area of the system increases, and the difference in user externality leads the whole system more stable. When the system is stable, the developer fee decreases. (3) The stable area becomes larger when developer externality increases; when the system is stable, the user fee becomes lower and developer fee becomes higher when developer externality increases. (4) The TDFC method is presented for controlling the chaos; we find that the system becomes more stable under the TDFC method.

Funder

Natural Science Foundation of Guizhou Province

Publisher

Hindawi Limited

Subject

Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Software

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3