Simultaneous Voltammetric Determination of Uric Acid, Xanthine, and Hypoxanthine Using CoFe2O4/Reduced Graphene Oxide-Modified Electrode

Author:

Hoan Nguyen Thi Vuong1ORCID,Minh Nguyen Ngoc1,Trang Nguyen Thi Hong1,Thuy Le Thi Thanh1ORCID,Van Hoang Cao1,Mau Tran Xuan2ORCID,Vu Ho Xuan Anh3,Thu Phan Thi Kim34ORCID,Phong Nguyen Hai3ORCID,Khieu Dinh Quang3ORCID

Affiliation:

1. Quy Nhon University, 55000, Vietnam

2. Hue University, 49000, Vietnam

3. University of Sciences, Hue University, 49000, Vietnam

4. Daklak Junior College of Education, 63000, Vietnam

Abstract

In the present paper, the synthesis of cobalt ferrite/reduced graphene oxide (Co2Fe2O4/rGO) composite and its use for the simultaneous determination of uric acid (UA), xanthine (XA), and hypoxanthine (HX) is demonstrated. Cobalt ferrite hollow spheres were synthesized by using the carbonaceous polysaccharide microspheres prepared from a D-glucose solution as templates, followed by calcination. The CoFe2O4/rGO composite was prepared with the ultrasound-assisted method. The obtained material was characterized by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, EDX elemental mapping, and nitrogen adsorption/desorption isotherms. The electrochemical behavior of UA, XA, and HX on the CoFe2O4/rGO-modified electrode was studied with cyclic voltammetry and differential pulse voltammetry (DPV). The modified electrode exhibits excellent electrocatalytic activity towards the oxidation of the three compounds. The calibration curves for UA, XA, and HX were obtained over the range of 2.0–10.0 μM from DPV. The limits of detection for UA, XA, and HX are 0.767, 0.650, and 0.506 μM, respectively. The modified electrode was applied to the simultaneous detection of UA, XA, and HX in human urine, and the results are consistent with those obtained from the high-performance liquid chromatography technique.

Funder

Bộ Giáo dục và Ðào tạo

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3