Anomaly Detection in Encrypted Internet Traffic Using Hybrid Deep Learning

Author:

Bakhshi Taimur12ORCID,Ghita Bogdan2ORCID

Affiliation:

1. Center for Information Management & Cyber Security, National University of Computer & Emerging Sciences, Lahore, Pakistan

2. Center for Security, Communications & Networking Research, University of Plymouth, Plymouth, UK

Abstract

An increasing number of Internet application services are relying on encrypted traffic to offer adequate consumer privacy. Anomaly detection in encrypted traffic to circumvent and mitigate cyber security threats is, however, an open and ongoing research challenge due to the limitation of existing traffic classification techniques. Deep learning is emerging as a promising paradigm, allowing reduction in manual determination of feature set to increase classification accuracy. The present work develops a deep learning-based model for detection of anomalies in encrypted network traffic. Three different publicly available datasets including the NSL-KDD, UNSW-NB15, and CIC-IDS-2017 are used to comprehensively analyze encrypted attacks targeting popular protocols. Instead of relying on a single deep learning model, multiple schemes using convolutional (CNN), long short-term memory (LSTM), and recurrent neural networks (RNNs) are investigated. Our results report a hybrid combination of convolutional (CNN) and gated recurrent unit (GRU) models as outperforming others. The hybrid approach benefits from the low-latency feature derivation of the CNN, and an overall improved training dataset fitting. Additionally, the highly effective generalization offered by GRU results in optimal time-domain-related feature extraction, resulting in the CNN and GRU hybrid scheme presenting the best model.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference56 articles.

1. IoT evolution and security challenges in cyber space;U. N. Dulhare,2019

2. Deep learning-based real-time VPN encrypted traffic identification methods

3. Reducing the Dimensionality of Data with Neural Networks

4. Network traffic classification method based on deep convolutional neural network;H. Z. W. Yong;Journal of Communications,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3