Solar Hybrid System Component Study in Low Concentrated Sunlight

Author:

Cotfas Petru A.1ORCID,Cotfas Daniel T.1ORCID

Affiliation:

1. Department of Electronics and Computers, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, 500036, Romania

Abstract

The solar energy is increasingly used as a renewable energy source. Raising the efficiency of energy conversion from solar to useful energy (electric and thermal) represents an important research direction in the renewable energy domain. Using hybrid systems for electric and thermal energy cogeneration can be a solution. In this study, a hybrid system (HS) is designed, manufactured, implemented, and experimentally tested under concentrated sunlight with a concentration ratio of 25 suns, obtained using a Fresnel lens as a sunlight concentrator. The HS comprises of four concentrated photovoltaic cells (CPVs), four thermoelectric generators (TEGs), and a solar thermal collector (STC). The HS is studied in three configurations of the exposed surface: only the CPV active area, the CPV active area with ceramic support, and the CPV active area with ceramic support covered with graphite sheet. Results reveal that the efficiency of each system component is affected by the exposed surface. If the efficiencies of the CPVs decrease from 32.3% to 30.8% from the first configuration to the last one, the efficiencies of TEGs and STC increase from 0.12% to 0.44 and from 26.3% to 52.0%, respectively. Increasing the concentration ratio from 25 to 33 suns, the power of the CPVs increases with almost 31%, but the efficiency decreases slightly, instead the efficiencies of the TEGs and STC increase.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3