Synthesis and Characterization of Modified Kaolin-Bentonite Composites for Enhanced Fluoride Removal from Drinking Water

Author:

Annan Ebenezer1,Nyankson Emmanuel1,Agyei-Tuffour Benjamin1ORCID,Armah Stephen Kofi1,Nkrumah-Buandoh George2,Hodasi Joanna Aba Modupeh2,Oteng-Peprah Michael3

Affiliation:

1. Department of Materials Science and Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana

2. Department of Physics, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana

3. Department of Water and Sanitation, University of Cape Coast, Cape Coast, Ghana

Abstract

Fluoride-contaminated drinking waters are known to cause severe health hazards such as fluorosis and arthritis. This paper presents the encapsulation of iron oxide nanoparticles in kaolin-bentonite composites adsorbents (KBNPs) for the removal of fluoride from drinking water by adsorption compared with kaolin-bentonite composite (KB). Adsorbents with an average weight of ∼200 mg and ∼7 mm diameter (granules) were prepared in the ratio of 10 : 10 : 0.1 for kaolinite, bentonite, and magnetite nanoparticles, respectively. The granules were air-dried and calcined at 750°C and contacted with 2 mg/L sodium fluoride solution at varying time periods. The adsorbents were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) formulation, and Brunauer–Emmett–Teller (BET), whereas the adsorption mechanism and the kinetics were explained using the Langmuir isotherm, Freundlich models, and pseudo-first-order and pseudo-second-order models. The results showed that the BET surface areas for the granules were 10 m2/g and 3 m2/g for KBNPs and KB, respectively. The SEM images for the adsorbents before and after adsorption confirm the plate-like morphology of kaolin and bentonite. The FTIR analyses of bentonite (3550 cm−1–4000 cm−1) and kaolin (400–1200 cm−1) correspond to the structural hydroxyl groups and water molecules in the interlayer space of bentonites and the vibrational modes of SiO4 tetrahedron of kaolin, respectively. The KBNPs composites also recorded a fluoride removal efficiency of ∼91% after 120 minutes compared with 64% for KB composites without Fe3O4 nanoparticles. The adsorptions of fluoride by the KBNPs and KB granules were found to agree with the Freundlich isotherm and a pseudo-second-order kinetic model, respectively. The results clearly show that the impregnation of clays with magnetite nanoparticles has significant effect in the removal of fluoride, and the implication of the results has been discussed to show the impact of clay-magnetite nanoparticles composites in the removal of fluoride from contaminated water.

Funder

Cambridge–Africa Partnership for Research Excellence (CAPREx) Project

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference61 articles.

1. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth

2. Effects of fluoride on physiology of animals and human beings;N. Chinoy;Indian Journal of Environmental Toxicology,1991

3. Fluoride in water: A UK perspective

4. Adsorption kinetics of fluoride on low cost materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3