3D Visualization Monitoring and Early Warning of Surface Deformation in Subsidence Area Based on GIS

Author:

Gao Lei1,Song Yuanwen2ORCID,Zhao Bo1

Affiliation:

1. Department of Geology and Jewelry, Lanzhou Resources and Environment Voc-tech College, Lanzhou 730021, China

2. Department of Safety Engineering, Lanzhou Resources and Environment Voc-tech College, Lanzhou 730021, China

Abstract

Due to the large-scale mining of mineral resources, the surface strata in many areas have collapsed and even developed into deformation and subsidence. Based on the conventional geotechnical deformation monitoring technology, the surface deformation prediction and disaster caused by the conventional geotechnical deformation monitoring technology can be avoided. In this paper, based on GIS, combined with the analysis of surface settlement, the surface settlement, slope value, curvature deformation value, horizontal displacement, and corresponding horizontal deformation formula are comprehensively analyzed and studied. In order to make the surface deformation visualization and realize the high approximation processing with the subsidence area, this paper innovatively introduces the 3D visualization settlement data analysis and realizes the calculation result analysis and corresponding retrieval multiple visualization in the subsidence area depth prediction process. On this basis, the prediction data of subsidence area can be optimized and analyzed so as to master the efficient and accurate law of surface deformation. In the experimental part, a mine is taken as the experimental object, and the 3D visual monitoring processing is carried out. In this paper, the main method to prevent electromagnetic leakage of the computer system is the source suppression method. The source suppression method solves the problem fundamentally by reducing or eliminating the emission of computer electromagnetic leakage source. In the actual experiment, the effect of this method is very effective. The experimental results show that the prediction results and corresponding early warning accuracy of the system are significantly improved compared with the traditional scheme, which provides practical significance for disaster prevention and corresponding environmental impact assessment.

Funder

Industrial Support and Guidance Project of Colleges and Universities in Gansu Province in 2019: Research and Key Technology of Coal Mine Reclamation in Gansu Province

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3