Neuroprotective Effect of Turmeric Extract in Combination with Its Essential Oil and Enhanced Brain Bioavailability in an Animal Model

Author:

Banji David1ORCID,Banji Otilia J. F.1,Srinivas Kavati2

Affiliation:

1. Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Saudi Arabia

2. Nalanda College of Pharmacy, Nalgonda, India

Abstract

Purpose. The study evaluated the neuroprotective effect and pharmacokinetic profile of turmeric extract and their metabolites in the blood and brain in an aluminum-induced neurotoxic animal model. Methods. Swiss albino mice received turmeric extract (TE), TE-essential oil combination (TE+EO) at doses of 25 and 50 mg/kg/day orally, vehicle (control), and a positive control group. Neurotoxicity was induced by injecting aluminum chloride (40 mg/kg/day, i.p.), and the effect of the intervention was studied for 45 days. The pharmacokinetic and behavioral biochemical markers of brain function and brain histopathological changes were evaluated. Results. The AUC 0- t showed a 30.1 and 54.2 times higher free curcumin concentration in plasma with 25 mg/kg and 50 mg/kg of TE+EO vs. TE, respectively. The concentration of free curcumin in the brain was 11.01 and 13.71-fold higher for 25 mg/kg and 50 mg/kg of TE+EO vs. TE, respectively. Aluminum impairs spatial learning and memory, which was significantly reversed with TE+EO by 28.6% (25 mg/kg) and 39.4% (50 mg/kg). In the elevated plus maze test, 44.8% (25 mg/kg) and 67.1% (50 mg/kg) improvements were observed. A significant reduction in aluminum-induced lipid peroxidation was observed. Also, the levels of glutathione, acetylcholinesterase, and catalase were improved with TE+EO. Damage to the hippocampal pyramidal cells was averted with TE+EO. Conclusion. The neuroprotective and antioxidant response confirms the benefits of TE+EO against aluminum-induced neurotoxicity. The presence of free curcumin and its metabolites in the brain and plasma establishes its improved bioavailability and tissue distribution. Therefore, the benefits of TE+EO could be harnessed in neurodegenerative diseases.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3