Effective Removal of Phosphate from Waste Water Based on Silica Nanoparticles

Author:

Nguyen Tan Tai1ORCID

Affiliation:

1. Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh 87000, Vietnam

Abstract

This study explored the potential application of silica nanoparticles (SiNPs) prepared from rice husk ash (RHA) to reuse phosphate from aqueous solution. The physicochemical analysis illustrated that the SiNPs, which were extracted from waste biomass, have a nonuniform shape with a size range of a few nanometer to hundreds of nanometers, a surface area of 15.56 m2·g−1, and an adsorption pore width of 4.06 nm. Those results carried out the possibility to utilize the SiNPs for removal of phosphate. Findings from the batch sorption experiments showed that the phosphate adsorption was controlled by experimental parameters, i.e., pH, adsorbent dosage, concentration of adsorbate, and adsorption time. The experimental results showed that the maximum phosphate adsorption capacity of SiNPs was achieved at around 9.08 mg·g−1 at adsorption conditions, i.e., pH 7, SiNPs dosage of 0.3 g, and adsorption time of 90 min. The phosphate removal based on SiNPs will offer several benefit such as an effective and low cost method, reliable to reuse as an effective slow release phosphate fertilizer.

Funder

Trường Đại học Trà Vinh

Publisher

Hindawi Limited

Subject

General Chemistry

Reference39 articles.

1. Discharge of nutrients from Swedish fish farming to adjacent sea areas;H. Ackefors;Ambio,1990

2. NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN

3. Eutrophication of aquatic ecosystems a new method for calculating the potential contributions of nitrogen and phosphorus

4. The release of nutrients and organic matter from aquaculture systems in Nordic countries

5. Phosphorus dynamics, eutrophication and fisheries in the aquatic ecosystems in India;K. K. Vass;Current Science,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3