Affiliation:
1. Department of Mathematics, Koç University, Sarıyer, 34450 Istanbul, Turkey
Abstract
We consider two types of spatial symmetry, namely, symmetry in the mixed or shared nearest neighbor (NN) structures. We use Pielou’s and Dixon’s symmetry tests which are defined using contingency tables based on the NN relationships between the data points. We generalize these tests to multiple classes and demonstrate that both the asymptotic and exact versions of Pielou’s first type of symmetry test are extremely conservative in rejecting symmetry in the mixed NN structure and hence should be avoided or only the Monte Carlo randomized version should be used. Under RL, we derive the asymptotic distribution for Dixon’s symmetry test and also observe that the usual independence test seems to be appropriate for Pielou’s second type of test. Moreover, we apply variants of Fisher’s exact test on the shared NN contingency table for Pielou’s second test and determine the most appropriate version for our setting. We also consider pairwise and one-versus-rest type tests in post hoc analysis after a significant overall symmetry test. We investigate the asymptotic properties of the tests, prove their consistency under appropriate null hypotheses, and investigate finite sample performance of them by extensive Monte Carlo simulations. The methods are illustrated on a real-life ecological data set.
Funder
Scientific and Technological Research Council of Turkey
Subject
General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献