Affiliation:
1. School of Information and Technology, Zhejiang Institute of Economics and Trade, Hangzhou, Zhejiang, China
Abstract
The era people live in is the era of big data, and massive data carry a large amount of information. This study aims to analyze RFID data based on big data and clustering algorithms. In this study, a RFID data extraction technology based on joint Kalman filter fusion is proposed. In the system, the proposed data extraction technology can effectively read RFID tags. The data are recorded, and the KM-KL clustering algorithm is proposed for RFID data, which combines the advantages of the K-means algorithm. The improved KM-KL clustering algorithm can effectively analyze and evaluate RFID data. The experimental results of this study prove that the recognition error rate of the RFID data extraction technology based on the joint Kalman filter fusion is only 2.7%. The improved KM-KL clustering algorithm also has better performance than the traditional algorithm.
Funder
Visiting Scholar Teacher Professional Development Project in Colleges and Universities
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献