KCF-Based Identification Approach for Vibration Displacement of Double-Column Bents under Various Earthquakes

Author:

Cai Wei1,Xie Wen1ORCID,He Tiantao2

Affiliation:

1. Department of Civil Engineering, Ningbo University, Ningbo 315211, China

2. Ningbo Municipal Facilities Center, Ningbo 315010, China

Abstract

Vibration displacements are one of the most significant indicators in the health monitoring and condition assessment of bridges in the life cycle. The traditional monitoring means, such as contact sensors, have relatively high-cost and limited points for displacement measurement of bridges. This paper proposes a low-cost and non-contact monocular vision system based on the KCF algorithm to accurately and timely identify the vibration displacement of bridges. A conversion method associated with a scale ratio was established to cope with the loss of depth information in images when a monocular camera is used to monitor multiple targets in different depths of the field. A series of shaking table tests on a two-column pier with energy dissipation beams were conducted to verify the feasibility, accuracy, effectiveness, and robustness of the KCF-based identification approach. The results showed that the vibration displacements of the column identified by the monocular vision system based on the KCF algorithm are almost consistent with the measurement results obtained by the laser displacement sensors. The peak displacement discrepancies between both measurement methods are within 6% for all cases with different shaking amplitudes and earthquake waves. The RMSE of the displacement histories between both measurement methods is very low. The corresponding frequency spectra contents identified by the monocular vision system based on the KCF algorithm match well with the measurement counterparts recorded from the laser displacement sensors.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3