Assessment of Acoustic Emission and Triaxial Mechanical Properties of Rock-Cemented Tailings Matrix Composites

Author:

Cao Shuai12ORCID,Yilmaz Erol3ORCID,Song Weidong12,Xue Gaili12

Affiliation:

1. State Key Laboratory of High-Efficient Mining and Safety of Metal Mines of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China

2. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. First Quantum Minerals Ltd., Cayeli Bakir Isletmeleri A.S., P. O. Box 42, Madenli, Cayeli, Rize TR53200, Turkey

Abstract

Acoustic emission (AE) test is a powerful technique for examining the sounds of cracks growing, breaking, and other modes of damage in cementitious materials deforming under stress, such as rock-cemented tailings matrix composites (RCTMC). RCTMC, an engineered mixture of tailings, cement, rock, and water, is widely used to fulfill numerous important roles at underground mine sites as a construction material and a ground support tool. To study the mechanical strength and AE properties of RCTMC, compression testing was carried out using a triaxial compression test system (TAW-2000) and AE monitoring system (PCI-2), and the failure modes of samples were also examined. Results have shown that (1) the failure process of RCTMC samples can be divided into six main stages: compaction, linear elastic characteristic, crack growth, primary damage development, cemented tailings backfill withstand stress zone, and secondary damage development stage. CTB has the strengthening effect on mechanical strength of rock; (2) the AE process can be also divided into six main stages: the prepeak quiescence period, the elastic energy reserve period, the first destruction development AE area, the secondary energy reserve period, the second damage development stage, and the postpeak calm period; and (3) samples’ cumulative ring count is “stepped” distribution over time, and the ring count has entered the postpeak flat stage after many active periods. The process of RCTMC samples from tensile to shear failure mode is represented by numerical simulation. Finally, the obtained experimental results can offer a useful reference for the further study of the mechanism of the surrounding rock and cemented tailings backfill structure.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3