Convergence Analysis on an Accelerated Proximal Point Algorithm for Linearly Constrained Optimization Problems

Author:

Lu Sha12ORCID,Wei Zengxin3

Affiliation:

1. School of Science, East China University of Science and Technology, Shanghai 200237, China

2. School of Mathematics and Statistics, Nanning Normal University, Nanning 530001, China

3. School of Mathematics and Information Science, Guangxi University, Nanning 530004, China

Abstract

Proximal point algorithm is a type of method widely used in solving optimization problems and some practical problems such as machine learning in recent years. In this paper, a framework of accelerated proximal point algorithm is presented for convex minimization with linear constraints. The algorithm can be seen as an extension to G u ¨ ler’s methods for unconstrained optimization and linear programming problems. We prove that the sequence generated by the algorithm converges to a KKT solution of the original problem under appropriate conditions with the convergence rate of O 1 / k 2 .

Funder

Natural Science Foundation of Guangxi Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference18 articles.

1. Message-passing for graphstructured linear programs: proximal methods and rounding schemes;P. Ravikumar;Journal of Machine Learning Research,2010

2. Relaxing Tight Frame Condition in Parallel Proximal Methods for Signal Restoration

3. General parameterized proximal point algorithm with applications in statistical learning

4. Régularisation d’Inéquations variation nelles par approximations successives;B. Martinet;French Journal of Computing and Operational Research,1970

5. Determination approche d’un point fixe d’une application pseudo-contractante;B. Martinet;Comptes rendus de l’Académie des Sciences,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3