A Thermal-Hydraulic-Mechanical Coupling Study of Heat Extraction from the Geothermal Reservoir with a Discrete Fracture Network

Author:

Ye Zhiwei1,Wang J. G.12ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The complex thermal-hydraulic-mechanical (THM) coupling is the key issue to the energy extraction from a geothermal reservoir, where fractures are the main channels for fluid circulation and heat transfer. However, the effects of matrix deformation-induced aperture variation and fracture roughness on heat recovery efficiency are unclear. In this paper, a fully coupling THM model based on a discrete fracture network is proposed to explore these coupling effects. First, the fracture roughness and the fracture aperture variation with effective stress are introduced. Second, the water flow and heat transfer in the matrix and fractures as well as the deformation of the geothermal reservoir are individually formulated for a fractured geothermal reservoir. Third, the model is validated with analytical solution for its thermal-hydraulic (TH) coupling effect and literature data for its hydraulic-mechanical (HM) coupling effect. Finally, the features of heat transfer and fluid flow in the fractured geothermal reservoir are comparatively analyzed through four scenarios. The simulation results indicate that the discrete fracture network severely impacts the pressure distribution and temperature advance. The aperture variation induced by solid deformation can enhance heat transfer efficiency, and the fracture roughness can reduce the heat transfer efficiency.

Funder

China University of Mining and Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3