Exploring Risk Factors with Crash Severity on China Two-Lane Rural Roads Using a Random-Parameter Ordered Probit Model

Author:

Xie Shikun12ORCID,Ji Xiaofeng1ORCID,Yang Wenchen2ORCID,Fang Rui2ORCID,Hao Jingjing3ORCID

Affiliation:

1. Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650504, China

2. National Engineering Laboratory for Surface Transportation Weather Impacts Prevention, Broadvision Engineering Consultants, Kunming 650200, China

3. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China

Abstract

Understanding the factors that contribute to traffic crashes can help provide a fundamental basis to plan and develop appropriate countermeasures for road safety issues emerging in particular on two-lane rural roads. However, most of the studies have focused on urban roadways and freeway systems, and few studies have investigated the issue of heterogeneity on two-lane rural roads. The purpose of this study is to uncover the risk factors influencing crash severity on two-lane rural roads in China. A sample of 1490 traffic crashes occurring on two-lane rural roads between 2012 and 2017 was collected from the Mouding County Highway Bureau in Yunnan, China. A random-parameter ordered probit model was estimated using these data to capture underlying unobserved characteristics in personal traits, vehicle attributes, roadway conditions, environmental factors, and crash attribute. To better understand the effect of critical factors on crash severity outcome probability, an elasticity analysis was then introduced. The results show that six factors such as driver’s attribution, illegal driving behaviour, access segment, day of week, vehicle type, and crash form have a significant impact on the injury severity, and the impacts of driving behaviours, access segment, and vehicle-fixed object crashes had significant variation across observations. Besides, the correlations between critical factors and the probability of serious injury sustained in traffic crashes are identified and discussed. The local driver indicator has more positive impact on the crash severity than nonlocal driver, and nonaccess segment appears a higher probability of serious or vicious collisions. It is worth mentioning that motorcycle-involved crashes do show an obvious correlation with crash injury severity. As for crash forms, vehicle-vehicle crashes are more likely to lead to severe crash injury. Besides, high-risk driving behaviour (e.g., fatigue driving, speeding, and converse driving), weekends, and holidays are found to have significant contribution to increasing the probability of traffic crash injuries and fatalities on two-lane rural roads.

Funder

National Key R&D Programme of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3