Efficacy of Constructing Digital Hybrid Skull-Dentition Images Using an Intraoral Scanner and Cone-Beam Computed Tomography

Author:

Lee Joo-Hee1ORCID,Byun Soo-Hwan234,Yi Sang-Min234,Park In-Young345,Yang Byoung-Eun234ORCID,Lee Hye-Lim134ORCID

Affiliation:

1. Division of Pediatric Dentistry, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea

2. Division of Oral & Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea

3. Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea

4. Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea

5. Division of Orthodontics, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea

Abstract

Cone-beam computed tomography (CBCT) can distort dentition, and additional imaging is often required. A plaster model to help digitize dental images has been widely used in clinical practice, but there are some inconveniences such as complexity of the process and the risk of damage. The aim of this study was to evaluate the potential for improving dentition imaging with CBCT scans using an intraoral scanner instead of a plaster model. The study used laser model-scanned images of plaster models, imaging from two intraoral scanners, and CBCT images from 20 patients aged 12-18 years. CS 3600 (Carestream Dental, Atlanta, USA) and i700 (Medit, Seoul, Korea) were used as intraoral scanners. The full arch was scanned at once or in three sections using intraoral scanners. The segmented scans were merged to obtain full-arch images. With i700, full-arch images were additionally acquired using its “smart stich” function. The virtual skull-dentition hybrid images obtained from intraoral scanners were superimposed with images obtained using a plaster cast. The difference and distance of coordinate values at each reference point were measured. The average distances from the images obtained with the plaster cast were smaller than 0.39 mm, which is the voxel size of CBCT. Scanning the complete or partial arch using CS 3600 or i700 satisfactorily complemented the CBCT when compared to the plaster model. The virtual skull-dentition hybrid image obtained from intraoral scanners will be clinically useful, especially for patients and surgeons who have difficulty in scanning the complete arch at once.

Funder

Ministry of Trade, Industry and Energy

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3