The Identification and Dissemination of Creative Elements of New Media Original Film and Television Works Based on Review Text Mining and Machine Learning

Author:

Yu Xiaonan1ORCID

Affiliation:

1. Deputy Director of Graduate Office, Shandong College of Arts, Jinan, Shandong 250300, China

Abstract

With the continuous growth of the film market and the consumption demand of audiences, the value of film content has become increasingly apparent. Extracting movie content elements is an important step in quantitative analysis of movie content. In this paper, based on text mining technology, deep data analysis of movie reviews is carried out using TF-IDF and machine learning to visualize high-frequency words, and sentiment analysis is performed on reviews to find out the hidden deep information behind the big data of movie reviews. Although the extracted keywords can draw the content and characteristics of the film for us, they cannot establish the correlation with the creative elements of the film and television works. Therefore, in this paper, the extracted keywords are clustered to find the central words of these words. First of all, in order to improve the representativeness of keywords, the Epoch data set and the Batchsize data set are used to conduct experimental analysis on the model in this paper. Through comparative experiments, it is concluded that when Batchsize = 32 and Epoch = 25, the model achieves the optimal classification effect. The analysis shows that when the training times are too small, the model is not fully learned, and when the training times are too many, the model will be overfitted, which will reduce the accuracy of the model, resulting in the opposite effect. The keywords extracted above can draw the content and characteristics of the movie for us.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3