Revenue Stacking for BESS: Fast Frequency Regulation and Balancing Market Participation in Italy

Author:

Rancilio Giuliano1ORCID,Bovera Filippo1ORCID,Merlo Marco1ORCID

Affiliation:

1. Politecnico di Milano, Department of Energy, Via Lambruschini 4a, Milan 20156, Italy

Abstract

Battery energy storage systems (BESS) are considered a relevant flexible resource for supporting the balancing of a RES-penetrated power grid. Since their cost structure is characterized by very high capital costs, it is of utmost importance to ensure efficient and effective operations from a techno-economic perspective. The possibility of services (and revenues) stacking is one of the most discussed optimization solutions. The present work provides a novel approach for BESS modeling, including the stacking of two diverse ancillary services, a dedicated balancing market bidding model, and a state-of-charge management strategy. Fast frequency regulation is proposed as a power-based service, requiring large ramping capability, but asking BESS activation just for a limited amount of time. For the remainder, BESS power can be traded on balancing market (BM): energy-based services, such as tertiary regulation, could be effectively coupled with power-based, fast regulations, increasing the economic attractiveness of investments in BESS. The case of fast reserve (FR), a new high-speed frequency response service proposed by the Italian TSO in Italy, is assessed in this study. FR provision foresees a capacity-based remuneration (k€/MW/year) and requires to ensure 1000 hours per year of availability. After assessing its cost-effectiveness as a stand-alone service, a sequential multiservice strategy is proposed, where BESS provides FR for 1000 hours, while for the rest of the time it is dedicated to the provision of replacement reserve (RR). Performances of BESS are evaluated considering the reliability of the provision, its operational efficiency, and investment’s economics. Performed tests demonstrate how, within the current Italian regulatory framework, the investment’s rate of return improves thanks to the multiservice approach. In particular, while maintaining a proper reliability, the minimum acceptable remuneration from FR yearly auctions decreases by 13%; at the same time, self-dispatching of energy through BM calls reduces the need to purchase energy on day-ahead market and keeps BESS state-of-charge far from saturation regions, thus also increasing its lifetime.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3