Photovoltaic Power Generation Forecasting Using a Novel Hybrid Intelligent Model in Smart Grid

Author:

Boum Alexandre Teplaira1ORCID,Foba Kakeu Vinny Junior1ORCID,Mbey Camille Franklin1ORCID,Yem Souhe Felix Ghislain1ORCID

Affiliation:

1. Department of Electrical Engineering, University of Douala ENSET, Douala, Cameroon

Abstract

The exponential growth of electrical demand and the integration of renewable energy sources (RES) brought new challenges in the traditional grid about energy quality. The transition from traditional grid to smart grid is the best solution which provides necessary tools and information and communication technologies (ICT) for service enhancement. In this study, variation of energy demand and some factors of atmospheric change are considered to forecast production of photovoltaic energy that can be adapted for evolution of consumption in smart grid. The contribution of this study concerns a novel optimized hybrid intelligent model made of the artificial neural network (ANN), support vector machine (SVM), and particle swarm optimization (PSO) implemented for long term photovoltaic (PV) power generation forecasting based on real data of consumption and climate factors of the city of Douala in Cameroon. The accuracy of this model is evaluated using the coefficients such as the mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and regression coefficient (R). Using this novel hybrid technique, the MSE, RMSE, MAPE, MAE, and R are 14.9721, 3.8693, 3.32%, 0.867, and 0.9984, respectively. These obtained results show that the novel hybrid model outperforms other models in the literature and can be helpful for future renewable energy requirements. However, the convergence speed of the proposed approach can be affected due to the random variability of available data.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference50 articles.

1. Optimal reliability of a smart grid;V. J. Foba Kakeu;International Journal of Smart Grid,2021

2. Potential challenges: integrating renewable energy with the smart grid;G. M. Shafiullah

3. A hybrid model for forecasting the consumption of electrical energy in a smart grid

4. The Path of the Smart Grid -The New and Improved Power Grid;R. Bayindir

5. Impacts of Distributed Renewable Energy Generations on Smart Grid Operation and Dispatch;J. Liu

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3