Relative Entropy-Based Similarity for Patterns in Graph Data

Author:

Liu Shihu1,Deng Li1ORCID,Gao Haiyan1,Ma Xueyu1

Affiliation:

1. School of Mathematics and Computer Sciences, Yunnan Minzu University, Kunming 650504, China

Abstract

How to make a correct similarity between patterns is a groundwork in data mining, especially for graph data. Despite these methods that can obtain great results, there may be still some limitations, for instance, the similarity of patterns in directed weighted graph data. Here, we introduce a new approach by taking the so-called the second-order neighbors into consideration. The proposed new similarity approach is named as relative entropy-based similarity for patterns in graph data, wherein the relative entropy provides a brand new aspect to make the difference between patterns in directed weighted graph data. The proposed similarity measure can be partitioned under three phases. First of all, strength set is given by degree and weight of patterns; in this phase, four variables holding the strength about out-degree, in-degree, out-weight, and in-weight are constructed. Then, with the help of Euclidean metric, pattern’s probability set is constructed, which contains influence of similarity between pattern and its all one-order neighbors. Finally, relative entropy is used to measure the difference between patterns. In order to examine the validity of our approach as well as its advantage comparing with the state-of-art approach, two sorts of experiments are suggested for real-world and synthetic graph data. The outcomes of experiment indicate that the recommended method get handy execution done measuring similarity and gain accurate results.

Funder

Scientific Research Foundation of Education Department of Yunnan Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Researches on Knowledge Distance and Its Relative Extensions;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3