Image Processing and Multi-Instance Learning-Based Recognition of Abnormal Behavior in Integrated Pipe Corridors

Author:

Xiao Peng1ORCID,Zhang Zhenji1ORCID,Kang Laisong2ORCID

Affiliation:

1. School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China

2. CPC National Energy Group Party School, Beijing 100011, China

Abstract

The use of big data technology to efficiently access valid corridor monitoring information embedded in unstructured data and to achieve fast and effective processing of video surveillance data is an effective means of monitoring abnormal behavior in integrated corridors. The study first divides the longer surveillance video into multiple parts and then extracts functions for each part based on CenterNet. Inspired by the area under the curve concept, MIAUC was further applied to a loss function model, which encouraged higher scores for anomalous segments compared to normal segments. Also, by formulating anomaly detection as a regression problem, methods based on weakly labeled training data will consider both normal and anomalous behavior for anomaly detection. To alleviate the difficulty of obtaining accurate segment-level labels, Multiple Instance Learning (MIL) is utilized to learn the anomaly model and detect video segment-level anomalies during testing. The results of the research enable effective 24/7 monitoring, storage functions, intrusion detection functions, and emergency linkage functions.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3