Affiliation:
1. Hebei Agricultural University, Baoding 071000, China
2. Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
Abstract
Drought is a limiting factor for cotton productivity and quality. Irrigation could increase cotton yield. This study is aimed at formulating a proper irrigation depth for cotton at China’ Inner Mongolia and at investigating the molecular mechanism underlying the difference induced by irrigation. Transcriptomic analysis was carried out to reveal the global transcriptome profiles on the leaves of cotton seedlings (G. hirsutumL. cv. “Zhongmian 92”) with trace irrigation tapes at 30 cm (D30) and 50 cm (D50) underground. The differentially expressed genes (DEGs) were identified and clustered by functional enrichment analysis. The results showed that no significant differences were found in the lint percentage. The yields of unpinned and lint cotton were increased by the D30 regime but decreased by the D50 regime. Transcriptomic analysis showed that 4,549 nonoverlapped DEGs were identified by comparative analysis. Transcription factors, includingbZIP,WARK,Myb, andNAC, were altered between D50 and D30. The D50 regime induced more DEGs compared with the D30 regime, which was associated with plant tolerance to abiotic stresses and drought. In conclusion, trace irrigation at 30 cm underground was suitable for cotton irrigation at China’s Inner Mongolia, while the D50 irrigation regime influenced the cotton yield via drought stress in cotton plants.
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献