Optimal Band Configuration for the Roof Surface Characterization Using Hyperspectral and LiDAR Imaging

Author:

Nimbalkar Prakash1ORCID,Jarocinska Anna1,Zagajewski Bogdan1

Affiliation:

1. Department of Geoinformatics, Cartography and Remote Sensing, Faculty of Geography and Regional Studies, University of Warsaw, Krakowskie Przedmiescie 30, 00-927 Warsaw, Poland

Abstract

Imaging spectroscopy in the remote sensing is an ever emerging platform that has offered the hyperspectral imaging (HSI) which delivers the Earth’s object information in hundreds of bands. HSI integrates conventional imaging with spectroscopy to get rich spectral and spatial features of the object. However, the challenges associated with HSI are its huge dimensionality and data redundancy that requests huge space, complex computations, and lengthier processing time. Therefore, this study aims to find the optimal bands to characterize the roof surfaces using supervised classifiers. To deal with high dimensionality of hyperspectral data, this study assesses the band selection method over data transformation methods. This study provides the comparison between data reduction methods and used classifiers. The height information from LiDAR was used to characterize urban roofs above the height of 2.5 meters. The optimal bands were investigated using supervised classifiers such as artificial neural network (ANN), support vector machine (SVM), and spectral angle mapper (SAM) by comparing accuracies. The classification result shows that ANN and SVM classifiers outperform whereas SAM performed poorly in roof characterization. The band selection method worked efficiently than the transformation methods. The classification algorithm successfully identifies the optimum bands with significant accuracy.

Funder

Ministerstwo Nauki i Szkolnictwa Wyzszego

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3