Metaheuristics for Order Scheduling Problem with Unequal Ready Times

Author:

Kung Jan-Yee1,Duan Jiahui2,Xu Jianyou3,Chung I-Hong4,Cheng Shuenn-Ren15,Wu Chin-Chia4ORCID,Lin Win-Chin4ORCID

Affiliation:

1. Department of Business Administration, Cheng Shiu University, Kaohsiung 1037, Taiwan

2. Business School, Sichuan University, Chengdu 610064, China

3. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

4. Department of Statistics, Feng Chia University, Taichung 40724, Taiwan

5. Shandong Yingcai University, Shandong, Jinan 250104, China

Abstract

In recent years, various customer order scheduling (OS) models can be found in numerous manufacturing and service systems in which several designers, who have developed modules independently for several different products, convene as a product development team, and that team completes a product design only after all the modules have been designed. In real-life situations, a customer order can have some requirements including due dates, weights of jobs, and unequal ready times. Once encountering different ready times, waiting for future order or job arrivals to raise the completeness of a batch is an efficient policy. Meanwhile, the literature releases that few studies have taken unequal ready times into consideration for order scheduling problem. Motivated by this limitation, this study addresses an OS scheduling model with unequal order ready times. The objective function is to find a schedule to optimize the total completion time criterion. To solve this problem for exact solutions, two lower bounds and some properties are first derived to raise the searching power of a branch-and-bound method. For approximate solution, four simulated annealing approaches and four heuristic genetic algorithms are then proposed. At last, several experimental tests and their corresponding statistical outcomes are also reported to examine the performance of all the proposed methods.

Funder

Taiwan’s Ministry of Science and Technology

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3