Efficient Secret Image Sharing Scheme with Authentication and Cheating Prevention

Author:

Zhang Lina12ORCID,Dang Xuan1ORCID,Feng Li3ORCID,Yang Junhan12ORCID

Affiliation:

1. College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China

2. School of Computer Science, Shaanxi Normal University, Xi’an 710119, China

3. College of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

Due to the widespread adoption and popularity of digital images in distributed storage, Secret Image Sharing (SIS) has attracted much attention. However, preventing the cheating of shares is an important problem that needs to be solved in the traditional SIS scheme. An adversary without image shares may participate in the restoration phase as a share owner. In this phase, the adversary can obtain real shares or prevent recovering real images by submitting fake shadows. Our schemes are based on the original Thien-Lin’s scheme. In the scheme I, we use some XOR operations to get two authentication codes through all secret pixel values to achieve a lightweight and fast-calculated authentication scheme for cheating prevention. This scheme is suitable for small devices with limited resources. In scheme II, we use a hash algorithm to generate the authentication code. This scheme is suitable for environments with larger storage space and higher security levels. Since all pixel values are involved in the authentication in our proposed schemes, it can prevent fake shadow images from cheating. Meanwhile, the shadow size is almost the same as the original Thien-Lin’s scheme. Experimental results and theoretical analysis show that the proposed schemes are feasible and effective.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3